Some Open problems about Singular Spectral Measures

Chun-Kit Lai, San Francisco State University

Xian, 2025

Background

Figure: In memory of Ka-Sing Lau (1948-2021) and Jean-Pierre Gabardo (1958-2024)

Spectral sets

It is well-known that $E(\mathbb{Z}^d)=\{e^{2\pi i n\cdot x}:n\in\mathbb{Z}^d\}$ is a Fourier orthonormal basis for $L^2[0,1]^d$.

Spectral sets

It is well-known that $E(\mathbb{Z}^d) = \{e^{2\pi i n \cdot x} : n \in \mathbb{Z}^d\}$ is a Fourier orthonormal basis for $L^2[0,1]^d$.

 $E(\Lambda) = \{e^{2\pi i \lambda \cdot x} : \lambda \in \Lambda\}$ and Ω is called a spectral set if there exists some Λ such that $E(\Lambda)$ is an orthogonal basis for $L^2(\Omega)$.

Spectral sets

It is well-known that $E(\mathbb{Z}^d) = \{e^{2\pi i n \cdot x} : n \in \mathbb{Z}^d\}$ is a Fourier orthonormal basis for $L^2[0,1]^d$.

 $E(\Lambda) = \{e^{2\pi i \lambda \cdot x} : \lambda \in \Lambda\}$ and Ω is called a spectral set if there exists some Λ such that $E(\Lambda)$ is an orthogonal basis for $L^2(\Omega)$.

Conjecture (Fuglede's conjecture, 1974)

 Ω is a spectral set if and only if Ω is a translational tile.

Spectral measures

Definition

Let μ be a Borel probability measure in \mathbb{R}^d with compact support. We say that μ is a spectral measure if there exists a countable Λ such that $E(\Lambda) = \{e^{2\pi i \lambda \cdot x} : \lambda \in \Lambda\}$ is an orthonormal basis for $L^2(\mu)$.

Spectral measures

Definition

Let μ be a Borel probability measure in \mathbb{R}^d with compact support. We say that μ is a spectral measure if there exists a countable Λ such that $E(\Lambda) = \{e^{2\pi i \lambda \cdot x} : \lambda \in \Lambda\}$ is an orthonormal basis for $L^2(\mu)$.

- 1. (Mutually orthogonal) $\widehat{\mu}(\lambda \lambda') = 0$ for all $\lambda \neq \lambda' \in \Lambda$.
- 2. (Completness or Parseval identity)

$$\sum_{\lambda \in \Lambda} |\int f(x)e_{\lambda}(x)d\mu(x)|^2 = \int |f|^2 d\mu(x), \forall f \in L^2(\mu).$$

Spectral measures

Definition

Let μ be a Borel probability measure in \mathbb{R}^d with compact support. We say that μ is a spectral measure if there exists a countable Λ such that $E(\Lambda) = \{e^{2\pi i \lambda \cdot x} : \lambda \in \Lambda\}$ is an orthonormal basis for $L^2(\mu)$.

- 1. (Mutually orthogonal) $\widehat{\mu}(\lambda \lambda') = 0$ for all $\lambda \neq \lambda' \in \Lambda$.
- 2. (Completness or Parseval identity)

$$\sum_{\lambda \in \Lambda} |\int f(x)e_{\lambda}(x)d\mu(x)|^2 = \int |f|^2 d\mu(x), \forall f \in L^2(\mu).$$

It is not hard to find absolutely continuous or purely discrete spectral measures.

Fractal spectral measures

(Jorgensen and Pedersen) The first singular measures with exponential ONB:

Let μ_4 be the Cantor measure supported on the Cantor set of 1/4-contractions.

$$\mu_4(E) = \frac{1}{2}\mu_4(4E) + \frac{1}{2}\mu_4(4E-2).$$

Fractal spectral measures

(**Jorgensen and Pedersen**) The first singular measures with exponential ONB:

Let μ_4 be the Cantor measure supported on the Cantor set of 1/4-contractions.

$$\mu_4(E) = \frac{1}{2}\mu_4(4E) + \frac{1}{2}\mu_4(4E-2).$$

$$\begin{split} \mu_4 &= \left(\frac{\delta_0 + \delta_{2/4}}{2}\right) * \left(\frac{\delta_0 + \delta_{2/4^2}}{2}\right) * \left(\frac{\delta_0 + \delta_{2/4^3}}{2}\right) \dots \\ &= \nu_n * \nu_{>n}. \end{split}$$

 ν_n is the convolution of the first *n* discrete measure.

Notice that $\{0,2\}$ is a spectral set in the group \mathbb{Z}_4 and the spectrum is $\{0,1\}.$

Notice that $\{0,2\}$ is a spectral set in the group \mathbb{Z}_4 and the spectrum is $\{0,1\}$.

Theorem (Jorgensen and Pedersen, 1998)

 $\mu_{ extsf{4}}$ is a spectral measure with a spectrum

$$\Lambda = \left\{ \sum_{j=0}^{N-1} 4^j \epsilon_j : \epsilon \in \{0,1\}
ight\}.$$

Theorem (Jorgensen and Pedersen, 1998)

 μ_3 , the Cantor measures supported on Cantor sets of 1/3 contractions,

$$\mu_3(E) = \frac{1}{2}\mu_3(3E) + \frac{1}{2}\mu_3(3E-2).$$

is NOT a spectral measure.

Strichartz question: Can 1/3 Cantor measure admit a Fourier frame?

Theorem (Jorgensen and Pedersen, 1998)

 μ_3 , the Cantor measures supported on Cantor sets of 1/3 contractions,

$$\mu_3(E) = \frac{1}{2}\mu_3(3E) + \frac{1}{2}\mu_3(3E-2).$$

is NOT a spectral measure.

Strichartz question: Can 1/3 Cantor measure admit a Fourier frame?

Still an open question!

Tiling equation

Proposition (Jorgensen and Pedersen, 1998)

 μ is a spectral measure with a spectrum Λ if and only if

$$|\widehat{\mu}|^2 * \delta_{\Lambda} = |\sum_{\lambda \in \Lambda} |\widehat{\mu}(\xi - \lambda)|^2 = 1, \forall \xi \in \mathbb{R}^d.$$

Tiling equation

Proposition (Jorgensen and Pedersen, 1998)

 μ is a spectral measure with a spectrum Λ if and only if

$$|\widehat{\mu}|^2 * \delta_{\Lambda} = |\sum_{\lambda \in \Lambda} |\widehat{\mu}(\xi - \lambda)|^2 = 1, \forall \xi \in \mathbb{R}^d.$$

 Ω is a translation tile if and only if $\mathbf{1}_{\Omega} * \delta_{\mathcal{J}} = 1$ for some $\mathcal{J} \subset \mathbb{R}^d$.

Tiling equation

Proposition (Jorgensen and Pedersen, 1998)

 μ is a spectral measure with a spectrum Λ if and only if

$$|\widehat{\mu}|^2 * \delta_{\Lambda} = |\sum_{\lambda \in \Lambda} |\widehat{\mu}(\xi - \lambda)|^2 = 1, \forall \xi \in \mathbb{R}^d.$$

 Ω is a translation tile if and only if $\mathbf{1}_{\Omega}*\delta_{\mathcal{J}}=1$ for some $\mathcal{J}\subset\mathbb{R}^d$.

Fuglede's conjecture:

$$\exists \Lambda \text{ s.t. } |\widehat{\mathbf{1}}_{\Omega}|^2 * \delta_{\Lambda} = |\Omega|^2 \Longleftrightarrow \exists \mathcal{J} \text{ s.t. } \mathbf{1}_{\Omega} * \delta_{\mathcal{J}} = 1.$$

Connection to Tiling

Tiling for singular measures:

Let ν be the self-similar measure supported on 1/4 Cantor set choosing digit $\{0,1\}$. Then

$$\mu * \nu = \mathcal{L}_{[0,1]}.$$

Hence, μ is also a translational tiling in the following sense.

$$\mu * (\nu * \delta_{\mathbb{Z}}) = m$$

where m is the standard Lebesgue measure on \mathbb{R}^1 .

Connection to Tiling

Tiling for singular measures:

Let ν be the self-similar measure supported on 1/4 Cantor set choosing digit $\{0,1\}$. Then

$$\mu * \nu = \mathcal{L}_{[0,1]}.$$

Hence, μ is also a translational tiling in the following sense.

$$\mu * (\nu * \delta_{\mathbb{Z}}) = m$$

where m is the standard Lebesgue measure on \mathbb{R}^1 .

Theorem (Gabardo, L. 2014)

Suppose that $\mu * \nu = \mathcal{L}_{[0,1]^d}$. Then all μ and ν are spectral measures.

Connection to Tiling

Tiling for singular measures:

Let ν be the self-similar measure supported on 1/4 Cantor set choosing digit $\{0,1\}$. Then

$$\mu * \nu = \mathcal{L}_{[0,1]}.$$

Hence, μ is also a translational tiling in the following sense.

$$\mu * (\nu * \delta_{\mathbb{Z}}) = m$$

where m is the standard Lebesgue measure on \mathbb{R}^1 .

Theorem (Gabardo, L. 2014)

Suppose that $\mu * \nu = \mathcal{L}_{[0,1]^d}$. Then all μ and ν are spectral measures.

An open problem

An open problem

Problem

Let μ be a Borel probability measure whose compact support is [0,1]. Suppose that μ is a spectral measure. Then μ must be the Lebesgue measure on [0,1].

Problem

Let μ be a Borel probability measure whose compact support is [0,1]. Suppose that μ is a spectral measure. Then μ must be the Lebesgue measure on [0,1].

1. (He, Lau, L., 2013) Law of pure type: It must be absolutely continuous, purely discrete or purely singularly continuous.

Problem

Let μ be a Borel probability measure whose compact support is [0,1]. Suppose that μ is a spectral measure. Then μ must be the Lebesgue measure on [0,1].

- 1. (He, Lau, L., 2013) Law of pure type: It must be absolutely continuous, purely discrete or purely singularly continuous.
- 2. (Dutkay and L., 2014) If μ is absolutely continuous, it must be a constant density.

Problem

Let μ be a Borel probability measure whose compact support is [0,1]. Suppose that μ is a spectral measure. Then μ must be the Lebesgue measure on [0,1].

- 1. (He, Lau, L., 2013) Law of pure type: It must be absolutely continuous, purely discrete or purely singularly continuous.
- 2. (Dutkay and L., 2014) If μ is absolutely continuous, it must be a constant density.
- 3. If μ is purely discrete, e.g.

$$\mu = \sum_{r_n \in \mathbb{Q} \cap [0,1]} 2^{-n} \delta_{r_n}$$

If μ is spectral, it must be of equal weight and have finitely many points. (I aba and Wang, 2006 or He Lau L 2013 for

1. Only purely singularly continuous is open.

- 1. Only purely singularly continuous is open.
- 2. (Dutkay and L., 2014) Let μ_p is the self-similar measure

$$\mu(E) = p\mu_p(2E) + (1-p)\mu_p(2E-1),$$

Then it is (frame-)spectral if and only if p = 1/2.

- 1. Only purely singularly continuous is open.
- 2. (Dutkay and L., 2014) Let μ_p is the self-similar measure

$$\mu(E) = p\mu_p(2E) + (1-p)\mu_p(2E-1),$$

Then it is (frame-)spectral if and only if p = 1/2.

3. (Hu and Lau, 2008 and Dai 2012) Let $\lambda=\frac{\sqrt{5}+1}{2}.$ μ_{λ} is the Bernoulli convolution

$$\mu_{\lambda}(E) = \frac{1}{2}\mu_{\lambda}(\lambda E) + \frac{1}{2}\mu_{\lambda}(\lambda E - (1 - \lambda)).$$

It is well-known to be singular with full support (by Erdős, 1930s). It is not spectral.

- 1. Only purely singularly continuous is open.
- 2. (Dutkay and L., 2014) Let μ_p is the self-similar measure

$$\mu(E) = p\mu_p(2E) + (1-p)\mu_p(2E-1),$$

Then it is (frame-)spectral if and only if p = 1/2.

3. (Hu and Lau, 2008 and Dai 2012) Let $\lambda=\frac{\sqrt{5}+1}{2}.$ μ_{λ} is the Bernoulli convolution

$$\mu_{\lambda}(E) = \frac{1}{2}\mu_{\lambda}(\lambda E) + \frac{1}{2}\mu_{\lambda}(\lambda E - (1 - \lambda)).$$

It is well-known to be singular with full support (by Erdős, 1930s). It is not spectral.

4. They are just very special examples of the problem.

Tiling equation: $|\widehat{\mu}|^2 * \delta_{\Lambda} = 1$

Tiling equation: $|\widehat{\mu}|^2 * \delta_{\Lambda} = 1$

Taking the distributional Fourier transform:

$$(\mu * \widetilde{\mu}) \cdot \widetilde{\delta_{\Lambda}} = \delta_0$$

Here,

$$\widehat{\left(|\widehat{\mu}|^2\right)} = \mu * \widetilde{\mu}$$

where $\widetilde{\mu}(E) = \mu(-E)$.

Tiling equation: $|\widehat{\mu}|^2 * \delta_{\Lambda} = 1$

Taking the distributional Fourier transform:

$$(\mu * \widetilde{\mu}) \cdot \widetilde{\delta_{\Lambda}} = \delta_0$$

Here,

$$\widehat{\left(|\widehat{\mu}|^2\right)} = \mu * \widetilde{\mu}$$

where $\widetilde{\mu}(E) = \mu(-E)$.

Conjecture

Let Λ be a spectrum for a measure μ in \mathbb{R}^d . Then

$$supp\widehat{\delta_{\Lambda}} \subset \{0\} \cup (supp(\mu * \widetilde{\mu}))^{C}.$$

Tiling equation: $|\widehat{\mu}|^2 * \delta_{\Lambda} = 1$

Tiling equation: $|\widehat{\mu}|^2 * \delta_{\Lambda} = 1$

Taking the distributional Fourier transform:

$$(\mu * \widetilde{\mu}) \cdot \widetilde{\delta_{\Lambda}} = \delta_0$$

Here,

$$\widehat{\left(|\widehat{\mu}|^2\right)} = \mu * \widetilde{\mu}$$

where $\widetilde{\mu}(E) = \mu(-E)$.

Tiling equation: $|\widehat{\mu}|^2 * \delta_{\Lambda} = 1$

Taking the distributional Fourier transform:

$$(\mu * \widetilde{\mu}) \cdot \widetilde{\delta_{\Lambda}} = \delta_0$$

Here,

$$\widehat{\left(|\widehat{\mu}|^2\right)} = \mu * \widetilde{\mu}$$

where $\widetilde{\mu}(E) = \mu(-E)$.

Conjecture (Support Conjecture)

Let Λ be a spectrum for a measure μ in \mathbb{R}^d . Then

$$supp(\widehat{\delta_{\Lambda}}) \subset \{0\} \cup (supp(\mu * \widetilde{\mu}))^{C}.$$

Spectral gap

Spectral gap a>0 for a tempered distribution T, is the largest a>0 such that \widehat{T} vanishes on a punctured open ball $B(0,a)\setminus\{0\}$. Λ is translationally bounded if there exists R>0 such that $\sup_{x\in\mathbb{R}^d}\#(\Lambda\cap B(x,R))<\infty$.

Spectral gap

Spectral gap a>0 for a tempered distribution T, is the largest a>0 such that \widehat{T} vanishes on a punctured open ball $B(0,a)\setminus\{0\}$. Λ is translationally bounded if there exists R>0 such that $\sup_{x\in\mathbb{R}^d}\#(\Lambda\cap B(x,R))<\infty$.

$$D^{+}(\Lambda) = \limsup_{R \to \infty} \sup_{x \in \mathbb{R}^d} \frac{\#(\Lambda \cap B(x,R))}{R^d}.$$

Spectral gap

Spectral gap a>0 for a tempered distribution T, is the largest a>0 such that \widehat{T} vanishes on a punctured open ball $B(0,a)\setminus\{0\}$. Λ is translationally bounded if there exists R>0 such that $\sup_{x\in\mathbb{R}^d}\#(\Lambda\cap B(x,R))<\infty$.

$$D^{+}(\Lambda) = \limsup_{R \to \infty} \sup_{x \in \mathbb{R}^d} \frac{\#(\Lambda \cap B(x,R))}{R^d}.$$

Theorem (Kolountzakis and L., 2025)

Suppose that Λ is translationally bounded and it has $D^+(\Lambda)=0$. Then $\widehat{\delta_{\Lambda}}$ has a zero spectral gap. In particular, a (tight-frame) spectrum for a singular measure must have a zero spectral gap.

Proposition

Let μ be a singular measure. Suppose that **Support Conjecture** holds and the support of $\mu * \widetilde{\mu}$ covers a neighborhood of the origin. Then μ cannot be (tight-frame) spectral.

Proposition

Let μ be a singular measure. Suppose that **Support Conjecture** holds and the support of $\mu * \widetilde{\mu}$ covers a neighborhood of the origin. Then μ cannot be (tight-frame) spectral.

Proof.

Suppose that Λ is a tight-frame spectrum for μ .

1. The conjecture said the support of $\widehat{\delta_{\Lambda}}$ is in the complement of the support of $\mu*\widetilde{\mu}$

Proposition

Let μ be a singular measure. Suppose that **Support Conjecture** holds and the support of $\mu * \widetilde{\mu}$ covers a neighborhood of the origin. Then μ cannot be (tight-frame) spectral.

Proof.

Suppose that Λ is a tight-frame spectrum for μ .

- 1. The conjecture said the support of $\widehat{\delta_\Lambda}$ is in the complement of the support of $\mu*\widetilde{\mu}$
- 2. But the assumption said there is an open ball in the support of $\mu * \widetilde{\mu}$.

Proposition

Let μ be a singular measure. Suppose that **Support Conjecture** holds and the support of $\mu * \widetilde{\mu}$ covers a neighborhood of the origin. Then μ cannot be (tight-frame) spectral.

Proof.

Suppose that Λ is a tight-frame spectrum for μ .

- 1. The conjecture said the support of $\widehat{\delta_{\Lambda}}$ is in the complement of the support of $\mu*\widetilde{\mu}$
- 2. But the assumption said there is an open ball in the support of $\mu * \widetilde{\mu}$.
- 3. a spectral gap for δ_{Λ} exists.

Proposition

Let μ be a singular measure. Suppose that **Support Conjecture** holds and the support of $\mu * \widetilde{\mu}$ covers a neighborhood of the origin. Then μ cannot be (tight-frame) spectral.

Proof.

Suppose that Λ is a tight-frame spectrum for μ .

- 1. The conjecture said the support of $\widehat{\delta_{\Lambda}}$ is in the complement of the support of $\mu*\widetilde{\mu}$
- 2. But the assumption said there is an open ball in the support of $\mu * \widetilde{\mu}$.
- 3. a spectral gap for δ_{Λ} exists.
- Contradicting the previous theorem
 Chun-Kit Lai, San Francisco State University
 Some O

Theorem (Kolountzakis and L., 2025)

Suppose that Λ is translationally bounded and it has $D^+(\Lambda) = 0$. Then $\widehat{\delta_{\Lambda}}$ has a zero spectral gap. In particular, a (tight-frame) spectrum for a singular measure must have a zero spectral gap.

Theorem (Kolountzakis and L., 2025)

Suppose that Λ is translationally bounded and it has $D^+(\Lambda)=0$. Then $\widehat{\delta_{\Lambda}}$ has a zero spectral gap. In particular, a (tight-frame) spectrum for a singular measure must have a zero spectral gap.

Proof.

1.
$$\operatorname{supp} \widehat{\delta_{\Lambda}} \cap B(0, a/2) \subseteq \backslash 0$$
.

Theorem (Kolountzakis and L., 2025)

Suppose that Λ is translationally bounded and it has $D^+(\Lambda)=0$. Then $\widehat{\delta_{\Lambda}}$ has a zero spectral gap. In particular, a (tight-frame) spectrum for a singular measure must have a zero spectral gap.

Proof.

- 1. $\operatorname{supp} \widehat{\delta_{\Lambda}} \cap B(0, a/2) \subseteq \backslash 0$.
- 2. (Gabardo, 2009)Translationally bounded implies $\widehat{\delta_{\Lambda}} = a\delta_0$

Theorem (Kolountzakis and L., 2025)

Suppose that Λ is translationally bounded and it has $D^+(\Lambda) = 0$. Then $\widehat{\delta_{\Lambda}}$ has a zero spectral gap. In particular, a (tight-frame) spectrum for a singular measure must have a zero spectral gap.

Proof.

- 1. $\operatorname{supp}\widehat{\delta_{\Lambda}}\cap B(0,a/2)\subseteq \backslash 0.$
- 2. (Gabardo, 2009)Translationally bounded implies $\widehat{\delta_{\Lambda}} = a\delta_0$
- 3. (Kolountzakis, 2000) $a = D(\Lambda)$ if Λ has a density and $\widehat{\delta_{\Lambda}}$ is locally a measure at the origin.

Theorem (Kolountzakis and L., 2025)

Suppose that Λ is translationally bounded and it has $D^+(\Lambda)=0$. Then $\widehat{\delta_{\Lambda}}$ has a zero spectral gap. In particular, a (tight-frame) spectrum for a singular measure must have a zero spectral gap.

Proof.

- 1. $\operatorname{supp} \widehat{\delta_{\Lambda}} \cap B(0, a/2) \subseteq \backslash 0$.
- 2. (Gabardo, 2009)Translationally bounded implies $\widehat{\delta}_{\Lambda} = a\delta_0$
- 3. (Kolountzakis, 2000) $a = D(\Lambda)$ if Λ has a density and $\widehat{\delta_{\Lambda}}$ is locally a measure at the origin.
- 4. $\widehat{\delta_{\Lambda}} = 0$ on B(0, a/2).

Theorem (Kolountzakis and L., 2025)

Suppose that Λ is translationally bounded and it has $D^+(\Lambda)=0$. Then $\widehat{\delta_{\Lambda}}$ has a zero spectral gap. In particular, a (tight-frame) spectrum for a singular measure must have a zero spectral gap.

Proof.

- 1. $\operatorname{supp} \widehat{\delta_{\Lambda}} \cap B(0, a/2) \subseteq \backslash 0$.
- 2. (Gabardo, 2009)Translationally bounded implies $\widehat{\delta}_{\Lambda} = a\delta_0$
- 3. (Kolountzakis, 2000) $a = D(\Lambda)$ if Λ has a density and $\widehat{\delta_{\Lambda}}$ is locally a measure at the origin.
- 4. $\widehat{\delta_{\Lambda}} = 0$ on B(0, a/2).

5 But this is impossible because we can take a non-negative Schwartz function whose Fourier transform is non-negative and supported inside B(0, a/2).

$$\langle \widehat{\delta_{\Lambda}}, \varphi \rangle = \langle \widehat{\delta_{\Lambda}}, \widehat{\varphi} \rangle \geq \widehat{\varphi}(0) > 0.$$

6 A spectrum for a singular measure must have a zero density and be translationally bounded.

5 But this is impossible because we can take a non-negative Schwartz function whose Fourier transform is non-negative and supported inside B(0, a/2).

$$\langle \widehat{\delta_{\Lambda}}, \varphi \rangle = \langle \widehat{\delta_{\Lambda}}, \widehat{\varphi} \rangle \geq \widehat{\varphi}(0) > 0.$$

6 A spectrum for a singular measure must have a zero density and be translationally bounded.

ASpectral measures on line segments

Spectral measures on line segments

Measures that are supported on the union of lower-dimensional affine subspaces/manifold.

Measures that are supported on the union of lower-dimensional affine subspaces/manifold.

It was first studied by Nir Lev (2016).

Measures that are supported on the union of lower-dimensional affine subspaces/manifold.

It was first studied by Nir Lev (2016).

He raised a question is decide if the surface measure of the unit ball admits a Fourier frame.

Measures that are supported on the union of lower-dimensional affine subspaces/manifold.

It was first studied by Nir Lev (2016).

He raised a question is decide if the surface measure of the unit ball admits a Fourier frame.

Theorem (L. Iosevich, Liu, Wyman, 2022)

Let K be a convex body on \mathbb{R}^d with smooth boundary ∂K having everywhere positive Gaussian curvature and let σ be the surface measure supported on ∂K . Then the measure σ does not admit a Fourier frame.

Sphere vs polytope

Theorem (L. Iosevich, Liu, Wyman, 2022)

Let K be a polytope on \mathbb{R}^d and let σ be the surface measure supported on ∂K . Then the measure σ is frame-spectral.

Definition

Let μ and ν be two continuous Borel probability measures on \mathbb{R}^1 . The additive space over μ and ν is the space $L^2(\rho)$, where ρ is the measure

$$\rho = \frac{1}{2}(\mu \times \delta_0 + \delta_0 \times \nu),$$

Definition

Let μ and ν be two continuous Borel probability measures on \mathbb{R}^1 . The additive space over μ and ν is the space $L^2(\rho)$, where ρ is the measure

$$\rho = \frac{1}{2}(\mu \times \delta_0 + \delta_0 \times \nu),$$

1. (Lev, 2016) If μ, ν . are frame-spectral, then ρ is frame-spectral.

Definition

Let μ and ν be two continuous Borel probability measures on \mathbb{R}^1 . The additive space over μ and ν is the space $L^2(\rho)$, where ρ is the measure

$$\rho = \frac{1}{2}(\mu \times \delta_0 + \delta_0 \times \nu),$$

- 1. (Lev, 2016) If μ, ν . are frame-spectral, then ρ is frame-spectral.
- 2. How about Riesz-spectrality or spectrality?

Non-overlapping additive measure: $0 \notin (\text{supp}\mu) \cap (\text{supp}\nu)$. Symmetric: $\mu = \nu$.

Theorem (Liu, Prince, L., 2021)

Let ρ be a non-overlapping symmetric additive measure with the component measure μ . Suppose that μ is Riesz-spectral. Then so is ρ .

Non-overlapping additive measure: $0 \notin (\operatorname{supp} \mu) \cap (\operatorname{supp} \nu)$. Symmetric: $\mu = \nu$.

Theorem (Liu, Prince, L., 2021)

Let ρ be a non-overlapping symmetric additive measure with the component measure μ . Suppose that μ is Riesz-spectral. Then so is ρ .

Theorem (Liu, Prince, L., 2021)

1. The L space admits a unique exponential orthonormal basis

$$\Lambda = \{(n/2, -n/2) : n \in \mathbb{Z}\}.$$

2. The T space and the $t=-\frac{1}{2}+\frac{1}{2n}$ -Plus space does not admit any exponential orthonormal basis.

Theorem (Liu, Prince, L., 2021)

1. The L space admits a unique exponential orthonormal basis

$$\Lambda = \{(n/2, -n/2) : n \in \mathbb{Z}\}.$$

- 2. The T space and the $t=-\frac{1}{2}+\frac{1}{2n}$ -Plus space does not admit any exponential orthonormal basis.
- The whole problem was completely solved after some years of effort. (Ai-Lu-Zhou (2023), Kolountzakis-Wu (2025), Lu (2025))

Theorem (Liu, Prince, L., 2021)

1. The L space admits a unique exponential orthonormal basis

$$\Lambda = \{(n/2, -n/2) : n \in \mathbb{Z}\}.$$

- 2. The T space and the $t=-\frac{1}{2}+\frac{1}{2n}$ -Plus space does not admit any exponential orthonormal basis.
- 1. The whole problem was completely solved after some years of effort. (Ai-Lu-Zhou (2023), Kolountzakis-Wu (2025), Lu (2025))
- 2. (Question:) Can the boundary of polytopes be spectral?

Theorem (Liu, Prince, L., 2021)

1. The L space admits a unique exponential orthonormal basis

$$\Lambda = \{(n/2, -n/2) : n \in \mathbb{Z}\}.$$

- 2. The T space and the $t=-\frac{1}{2}+\frac{1}{2n}$ -Plus space does not admit any exponential orthonormal basis.
- The whole problem was completely solved after some years of effort. (Ai-Lu-Zhou (2023), Kolountzakis-Wu (2025), Lu (2025))
- 2. (Question:) Can the boundary of polytopes be spectral?
- 3. By verifying the support conjecture, we solve the whole problem.

Theorem (Kolountzakis and L., 2025)

- 1. A finite union of line segments that forms a closed curve, self-intersecting or not, cannot be tight-frame spectral.
- 2. A finite union of line segments containing three lines that start at the same point and point in distinct directions cannot be tight-frame spectral.

Sketch of Proof (Square). Let μ be the boundary measure of the square and it is equal to

$$\mu = \frac{1}{4}(\mu_1 + \mu_2 + \mu_3 + \mu_4)$$

 μ_i are the line Lebegue measure on the each line.

Sketch of Proof (Square). Let μ be the boundary measure of the square and it is equal to

$$\mu = \frac{1}{4}(\mu_1 + \mu_2 + \mu_3 + \mu_4)$$

 μ_i are the line Lebegue measure on the each line.

$$\mu * \widetilde{\mu} = \frac{1}{16} \sum_{i,j=1}^{4} \mu_i * \widetilde{\mu}_j.$$

Sketch of Proof (Square). Let μ be the boundary measure of the square and it is equal to

$$\mu = \frac{1}{4}(\mu_1 + \mu_2 + \mu_3 + \mu_4)$$

 μ_i are the line Lebegue measure on the each line.

$$\mu * \widetilde{\mu} = \frac{1}{16} \sum_{i,j=1}^{4} \mu_i * \widetilde{\mu}_j.$$

Non-parallel lines: $\mu_i * \widetilde{\mu_j}$ is the Lebesgue measure on the square $[0,1]^2$, $[-1,0]^2$, $[-1,0] \times [0,1]$ or $[0,1] \times [-1,0]$.

Sketch of Proof (Square). Let μ be the boundary measure of the square and it is equal to

$$\mu = \frac{1}{4}(\mu_1 + \mu_2 + \mu_3 + \mu_4)$$

 μ_i are the line Lebegue measure on the each line.

$$\mu * \widetilde{\mu} = \frac{1}{16} \sum_{i,j=1}^{4} \mu_i * \widetilde{\mu}_j.$$

Non-parallel lines: $\mu_i * \widetilde{\mu_j}$ is the Lebesgue measure on the square $[0,1]^2$, $[-1,0]^2$, $[-1,0] \times [0,1]$ or $[0,1] \times [-1,0]$.

Parallel lines: A singular measure on the line segment.

Main Claim: If Λ is a spectrum for μ , then $\widehat{\delta_{\Lambda}}$ has no support in the above square.

Main Claim: If Λ is a spectrum for μ , then $\widehat{\delta_{\Lambda}}$ has no support in the above square.

The claim implies there is a spectral gap for δ_{Λ} which is a contradiction since Λ is a spectrum for a singular measure.

Smooth part

Theorem (Support Conjecture holds for smooth $\mu*\widetilde{\mu}$)

Suppose (μ, Λ) is a tight-frame spectral pair such that $\mu * \widetilde{\mu}$ is absolutely continuous in the open set $U \not\ni 0$ and has a smooth, strictly positive density therein. Then $\operatorname{supp}(\widehat{\delta_{\Lambda}}) \cap U = \varnothing$

Smooth part

Theorem (Support Conjecture holds for smooth $\mu * \widetilde{\mu}$)

Suppose (μ, Λ) is a tight-frame spectral pair such that $\mu * \widetilde{\mu}$ is absolutely continuous in the open set $U \not\ni 0$ and has a smooth, strictly positive density therein. Then $\operatorname{supp}(\widehat{\delta_{\Lambda}}) \cap U = \varnothing$

Let $h = \mu * \widetilde{\mu}$ is smooth with compact support. $h \cdot \widehat{\delta_{\Lambda}}$ is a well-defined distribution. As

$$\hat{h} * \delta_{\Lambda} = 1,$$

so
$$h\widehat{\delta_{\Lambda}} = \delta_0$$
.

Smooth part

Theorem (Support Conjecture holds for smooth $\mu * \widetilde{\mu}$)

Suppose (μ, Λ) is a tight-frame spectral pair such that $\mu * \widetilde{\mu}$ is absolutely continuous in the open set $U \not\ni 0$ and has a smooth, strictly positive density therein. Then $\operatorname{supp}(\widehat{\delta_{\Lambda}}) \cap U = \varnothing$

Let $h = \mu * \widetilde{\mu}$ is smooth with compact support. $h \cdot \widehat{\delta_{\Lambda}}$ is a well-defined distribution. As

$$\hat{h} * \delta_{\Lambda} = 1,$$

so $h\widehat{\delta_{\Lambda}} = \delta_0$.

But h is positive, for all smooth φ supported on U,

$$\delta_{\Lambda}(\varphi) = h\widehat{\delta_{\Lambda}}(\varphi/h) = 0.$$

Theorem (classic tempered distribution theorem)

Suppose that T a tempered distribution supported on $\mathbb{R} \times \{0\}$. Then

$$\langle T, \varphi \rangle = \sum_{j=0}^{J} \left\langle T_j, \frac{\partial^j}{\partial^j x_2} \varphi |_{x_2=0} \right\rangle$$

for some tempered distribution T_i on \mathbb{R}^1 .

Lemma (Key Lemma)

Suppose $F \in L^{\infty}(\mathbb{R}^2)$ and $T = \widehat{F}$, a tempered distribution, has $supp(T) \subset \mathbb{R} \times \setminus \{0\}$. Then

(a) there exists a distribution T_1 on $\mathbb R$ such that for any $h \in \mathcal S(\mathbb R^2)$ we have

$$T(h) = T_1(h(\cdot,0))$$
, and

(b) F does not depend on x_2 .

Lemma (Key Lemma)

Suppose $F \in L^{\infty}(\mathbb{R}^2)$ and $T = \widehat{F}$, a tempered distribution, has $supp(T) \subset \mathbb{R} \times \setminus \{0\}$. Then

$$T(h) = T_1(h(\cdot,0))$$
, and

- (b) F does not depend on x_2 .
 - 1. Take ψ be smooth supported in the ball $B((a,0),\varepsilon)$. We want to show that $\psi \widehat{\delta_{\Lambda}} = 0$.

Lemma (Key Lemma)

Suppose $F \in L^{\infty}(\mathbb{R}^2)$ and $T = \widehat{F}$, a tempered distribution, has $supp(T) \subset \mathbb{R} \times \setminus \{0\}$. Then

$$T(h) = T_1(h(\cdot,0))$$
, and

- (b) F does not depend on x_2 .
 - 1. Take ψ be smooth supported in the ball $B((a,0),\varepsilon)$. We want to show that $\psi \widehat{\delta_{\Lambda}} = 0$.
 - 2. $F = \widehat{\psi} * \delta_{\Lambda}$ is a bounded function.

Lemma (Key Lemma)

Suppose $F \in L^{\infty}(\mathbb{R}^2)$ and $T = \widehat{F}$, a tempered distribution, has $supp(T) \subset \mathbb{R} \times \setminus \{0\}$. Then

$$T(h) = T_1(h(\cdot,0))$$
, and

- (b) F does not depend on x_2 .
 - 1. Take ψ be smooth supported in the ball $B((a,0),\varepsilon)$. We want to show that $\psi \widehat{\delta_{\Lambda}} = 0$.
 - 2. $F = \widehat{\psi} * \delta_{\Lambda}$ is a bounded function.
 - 3. $\int_{F \times \mathbb{R}} |F| dx = \infty$ on some bounded set E.

Lemma (Key Lemma)

Suppose $F \in L^{\infty}(\mathbb{R}^2)$ and $T = \widehat{F}$, a tempered distribution, has $supp(T) \subset \mathbb{R} \times \setminus \{0\}$. Then

$$T(h) = T_1(h(\cdot,0))$$
, and

- (b) F does not depend on x_2 .
 - 1. Take ψ be smooth supported in the ball $B((a,0),\varepsilon)$. We want to show that $\psi \widehat{\delta_{\Lambda}} = 0$.
 - 2. $F = \widehat{\psi} * \delta_{\Lambda}$ is a bounded function.
 - 3. $\int_{F \times \mathbb{R}} |F| dx = \infty$ on some bounded set E.
 - 4. Fubini's and projection of the spectrum is still a tight frame,

Riesz bases of exponentials

- 1. admits a frame of exponentials (losevich, Liu, L, Wyman, 2022).
- 2. does not have orthonormal bases of exponentials (Kolountzakis, L. 2025)

- 1. admits a frame of exponentials (losevich, Liu, L, Wyman, 2022).
- does not have orthonormal bases of exponentials (Kolountzakis, L. 2025)
- 3. Question: How about Riesz bases of exponentials (RB)?

- 1. admits a frame of exponentials (losevich, Liu, L, Wyman, 2022).
- does not have orthonormal bases of exponentials (Kolountzakis, L. 2025)
- 3. Question: How about Riesz bases of exponentials (RB)?
- 4. There exists a bounded measurable set without RB (Kozma, Nitzan, Olevskii, 2023)

- 1. admits a frame of exponentials (losevich, Liu, L, Wyman, 2022).
- does not have orthonormal bases of exponentials (Kolountzakis, L. 2025)
- 3. Question: How about Riesz bases of exponentials (RB)?
- 4. There exists a bounded measurable set without RB (Kozma, Nitzan, Olevskii, 2023)
- 5. All finite discrete measures admit RB.

- 1. admits a frame of exponentials (losevich, Liu, L, Wyman, 2022).
- does not have orthonormal bases of exponentials (Kolountzakis, L. 2025)
- 3. Question: How about Riesz bases of exponentials (RB)?
- 4. There exists a bounded measurable set without RB (Kozma, Nitzan, Olevskii, 2023)
- 5. All finite discrete measures admit RB.
- 6. There are fractal measures admitting RB, but not ONB (L. and Wang, 2017).

- 1. admits a frame of exponentials (losevich, Liu, L, Wyman, 2022).
- does not have orthonormal bases of exponentials (Kolountzakis, L. 2025)
- 3. Question: How about Riesz bases of exponentials (RB)?
- 4. There exists a bounded measurable set without RB (Kozma, Nitzan, Olevskii, 2023)
- 5. All finite discrete measures admit RB.
- There are fractal measures admitting RB, but not ONB (L. and Wang, 2017).
- 7. Bounded Multi-tiles by full-rank lattices admit RB (Kolountzakis, 2015), (Lev and Grepstad, 2014).

For a square boundary, it can be regarded as a multi-tiling by a closed subgroup $\mathbb{Z} \times \mathbb{R}.$

Unfortunately, it does not admit Riesz basis in the form of finite union of lattices induced by the multi-tiling.

Theorem (L. and Sheynis, 2023)

The boundary of the square does not admit a Riesz basis of the type $\bigcup_{k=1}^{N} (\Lambda + t_k)$ where $\Lambda = \mathbb{Z} \times \{0\}$.

Unfortunately, it does not admit Riesz basis in the form of finite union of lattices induced by the multi-tiling.

Theorem (L. and Sheynis, 2023)

The boundary of the square does not admit a Riesz basis of the type $\bigcup_{k=1}^{N} (\Lambda + t_k)$ where $\Lambda = \mathbb{Z} \times \{0\}$.

However, the following does.

Thank you